NUCLEAR FAMILY 19769
THE MAGICALALPHABET
..................
THIS IS THE SCENE OF THE SCENE UNSEEN THE UNSEEN SEEN OF THE SCENE UNSEEN THIS IS THE SCENE
THE DIVINE COMEDY OF DANTE ALIGHIERI (1265-1321) THE FLORENTINE CANTICA I HELL (L'INFERNO) INTRODUCTION Page 9 "Midway this way of life we're bound upon I woke to find myself in a dark wood, Where the right road was wholly lost and gone."
THE DIVINE COMEDY OF DANTE ALIGHIERI (1265-1321) THE FLORENTINE CANTICA I HELL (L'INFERNO) INTRODUCTION Page 9 "Power failed high fantasy here; yet, swift to move Even as a wheel moves equal, free from jars, Already my heart and will were wheeled by love, The Love that moves the sun and other stars."
THE FAR YONDER SCRIBE AND OFT TIMES SHADOWED SUBSTANCES WATCHED IN FINE AMAZE THE ZED ALIZ ZED IN SWIFT REPEAT SCATTER STAR DUST AMONGST THE LETTERS OF THEIR PROGRESS AT THE THROW OF THE NINTH NUMBER WHEN IN CONJUNCTION SET THE FAR YONDER SCRIBE MADE RECORD OF THEIR FALL
BLESSED BE THE FRUIT OF THAT WOMBS FOETUS
I AM THE OPPOSITE OF THE OPPOSITE I AM THE OPPOSITE OF OPPOSITE IS THE AM I I ALWAYS AM
GREETINGS CHILD OF THE RAINBOW
THE HOURS OF HORUS THAT I OF THAT I OF THAT I THAT I AM SALUTES THE ALMIGHTY THAT IS THEE PEACE BE UNTO YOU GOODWILL UNTO ALL SENTIENT BEINGS
TEN ELEVEN TWELVE
ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE
ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE
14 x 5 x 14 ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE 14 x 5 x 14
ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE Z5RO O55 T5O THR55 FOUR FIV5 SIX S5V55 5IGHT 5I55
Z5RO O55 T5O THR55 FOUR FIV5 SIX S5V55 5IGHT 5I55 ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE 14 x 5 x 14
TEN ELEVEN TWELVE
TEN ELEVEN TWELVE
TEN ELEVEN TWELVE
TEN ELEVEN TWELVE LETTERS TRANSPOSED INTO NUMBER REARRANGED IN NUMERICAL ORDER LOOK AT THE 5FIVE5S LOOK AT THE 5FIVE5S LOOK AT THE 5FIVE5S THE 5FIVE5S THE 5FIVE5S 5 x 9 = 45
TEN ELEVEN TWELVE
TEN ELEVEN TWELVE
THIRTEEN FOURTEEN FIFTEEN SIXTEEN SEVENTEEN EIGHTEEN NINETEEN
THIRTEEN FOURTEEN FIFTEEN SIXTEEN SEVENTEEN EIGHTEEN NINETEEN
LETTERS TRANSPOSED INTO NUMBER REARRANGED IN NUMERICAL ORDER LOOK AT THE 5FIVE5S LOOK AT THE 5FIVE5S LOOK AT THE 5FIVE5S THE 5FIVE5S THE 5FIVE5S 5 x 28 = 140 LOOK AT THJE 5FIVES LOOK AT THE 5FIVES LOOK AT THE 5FIVES THE 5FIVES THE 5FIVES 5 x 28 = 140
THIRTEEN FOURTEEN FIFTEEN SIXTEEN SEVENTEEN EIGHTEEN NINETEEN
NEMATODE
What are Nematodes? | Department of Nematology https://nematology.ucr.edu › about › what-are-nematodes Why are nematodes important? ... Most nematodes feed on bacteria, fungi, or other microscopic creatures. As such, they are a major component of soil and sediment ... Nematodes have been reported from every continent on earth and occur in deserts, swamps, the oceans, the tropics and Antarctica. Usually nematodes are invisible to all but a few specialists because most are microscopic and transparent. How many nematodes are there? Although estimated numbers of species are in the millions, only a few thousand have been named; almost any shovel full of soil, freshwater or marine sediment is likely to have thousands of worms including new species. Why are nematodes important? Most nematodes feed on bacteria, fungi, or other microscopic creatures. As such, they are a major component of soil and sediment ecosystems. One species that feeds on soil bacteria, Caenorhabditis elegans, has gained fame as a research model: three specialists on the biology of this worm are the 2002 recipients of the Nobel prize in medicine. A small fraction of all nematode species are parasites of humans, livestock or agricultural crops. Consequently, these have attracted the most attention from Nematology researchers. For example, root-knot, cyst and lesion nematodes are pests of a wide variety of crops and are annually responsible for billions of dollars of crop losses. Well known animal parasites with health and economic impact include pinworms, hookworms, trichina and dog heartworm. Certain parasitic nematodes are helpful, including those that attack insects and are used to manage some harmful insects. The name of the group Nematoda, informally called "nematodes", came from Nematoidea, originally defined by Karl Rudolphi (1808),[30] from Ancient Greek ??µa (nêma, nêmatos, 'thread') and -eid?? (-eides, 'species'). It was treated as family Nematodes by Burmeister (1837).[30] The nematodes or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-parasitic nematodes being known as eelworms. Nematodes are microscopic creatures, that act as parasites on other insects. They release bacteria into the host's body to kill them. ... Unlike a chemical spray, which may drift off target, nematodes are specific to the host pest, so that other wildlife is not affected. You can buy nematodes online.
NEMATODE Nematode - Wikipedia The nematodes or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-parasitic nematodes being known as eelworms. ?Caenorhabditis elegans · ?Hox gene · ?Nematomorpha · ?AscarididaeNematode species can be difficult to distinguish from one another. Consequently, estimates of the number of nematode species described to date vary by author and may change rapidly over time. A 2013 survey of animal biodiversity published in the mega journal Zootaxa puts this figure at over 25,000.[6][7] Estimates of the total number of extant species are subject to even greater variation. A widely referenced[8] article published in 1993 estimated there may be over 1 million species of nematode.[9] A subsequent publication vigorously challenged this claim on the grounds that it is unsupported by fact, estimating the figure to be as low as 40,000 species.[10] Although the highest estimates (up to 100 million species) have since been deprecated, estimates supported by rarefaction curves,[11][12] together with the use of DNA barcoding[13] and the increasing acknowledgment of widespread cryptic species among nematodes,[14] have placed the figure closer to 1 million species.[15] Nematodes have successfully adapted to nearly every ecosystem: from marine (salt) to fresh water, soils, from the polar regions to the tropics, as well as the highest to the lowest of elevations (including mountains). They are ubiquitous in freshwater, marine, and terrestrial environments, where they often outnumber other animals in both individual and species counts, and are found in locations as diverse as mountains, deserts, and oceanic trenches. They are found in every part of the earth's lithosphere,[16] even at great depths, 0.9–3.6 km (3,000–12,000 ft) below the surface of the Earth in gold mines in South Africa.[17][18][19][20][21] They represent 90% of all animals on the ocean floor.[22] In total, 4.4 × 1020 nematodes inhabit the Earth's topsoil, or approximately 60 billion for each human, with the highest densities observed in tundra and boreal forests.[23] Their numerical dominance, often exceeding a million individuals per square meter and accounting for about 80% of all individual animals on earth, their diversity of lifecycles, and their presence at various trophic levels point to an important role in many ecosystems.[23][24] They have been shown to play crucial roles in polar ecosystems.[25][26] The roughly 2,271 genera are placed in 256 families.[27] The many parasitic forms include pathogens in most plants and animals. A third of the genera occur as parasites of vertebrates; about 35 nematode species occur in humans.[27] Nathan Cobb, a nematologist, described the ubiquity of nematodes on Earth as thus: In short, if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes. The location of towns would be decipherable since, for every massing of human beings, there would be a corresponding massing of certain nematodes. Trees would still stand in ghostly rows representing our streets and highways. The location of the various plants and animals would still be decipherable, and, had we sufficient knowledge, in many cases even their species could be determined by an examination of their erstwhile nematode parasites.[28] The term is from Greek ??µat?d?? (plural ??µat?de??), ntr. ??µat?de? (plural ??µat?d?);[29] Latin: Nematoda. The word nematode comes from the Modern Latin compound of nemat- "thread" (from Greek nema, genitive nematos "thread," from stem of nein "to spin"; see needle) + -odes "like, of the nature of" (see -oid). In 1758, Linnaeus described some nematode genera (e.g., Ascaris), then included in the Vermes. The name of the group Nematoda, informally called "nematodes", came from Nematoidea, originally defined by Karl Rudolphi (1808),[30] from Ancient Greek ??µa (nêma, nêmatos, 'thread') and -eid?? (-eides, 'species'). It was treated as family Nematodes by Burmeister (1837).[30] At its origin, the "Nematoidea" erroneously included Nematodes and Nematomorpha, attributed by von Siebold (1843). Along with Acanthocephala, Trematoda, and Cestoidea, it formed the obsolete group Entozoa,[31] created by Rudolphi (1808).[32] They were also classed along with Acanthocephala in the obsolete phylum Nemathelminthes by Gegenbaur (1859). In 1861, K. M. Diesing treated the group as order Nematoda.[30] In 1877, the taxon Nematoidea, including the family Gordiidae (horsehair worms), was promoted to the rank of phylum by Ray Lankester. The first clear distinction between the nemas and gordiids was realized by Vejdovsky when he named a group to contain the horsehair worms the order Nematomorpha. In 1919, Nathan Cobb proposed that nematodes should be recognized alone as a phylum.[33] He argued they should be called "nema" in English rather than "nematodes" and defined the taxon Nemates (later emended as Nemata, Latin plural of nema), listing Nematoidea sensu restricto as a synonym. However, in 1910, Grobben proposed the phylum Aschelminthes and the nematodes were included in as class Nematoda along with class Rotifera, class Gastrotricha, class Kinorhyncha, class Priapulida, and class Nematomorpha (The phylum was later revived and modified by Libbie Henrietta Hyman in 1951 as Pseudoceolomata, but remained similar). In 1932, Potts elevated the class Nematoda to the level of phylum, leaving the name the same. Despite Potts' classification being equivalent to Cobbs', both names have been used (and are still used today) and Nematode became a popular term in zoological science.[34] Since Cobb was the first to include nematodes in a particular phylum separated from Nematomorpha, some researchers consider the valid taxon name to be Nemates or Nemata, rather than Nematoda,[35] because of the zoological rule that gives priority to the first used term in case of synonyms. Phylogeny?[edit] The phylogenetic relationships of the nematodes and their close relatives among the protostomian Metazoa are unresolved. Traditionally, they were held to be a lineage of their own, but in the 1990s, they were proposed to form the group Ecdysozoa together with moulting animals, such as arthropods. The identity of the closest living relatives of the Nematoda has always been considered to be well resolved. Morphological characters and molecular phylogenies agree with placement of the roundworms as a sister taxon to the parasitic Nematomorpha; together, they make up the Nematoida. Along with the Scalidophora (formerly Cephalorhyncha), the Nematoida form the clade Cycloneuralia, but much disagreement occurs both between and among the available morphological and molecular data. The Cycloneuralia or the Introverta—depending on the validity of the former—are often ranked as a superphylum.[36] Nematode systematics?[edit] Due to the lack of knowledge regarding many nematodes, their systematics is contentious. An early and influential classification was proposed by Chitwood and Chitwood[37]—later revised by Chitwood[38]—who divided the phylum into two classes—Aphasmidia and Phasmidia. These were later renamed Adenophorea (gland bearers) and Secernentea (secretors), respectively.[39] The Secernentea share several characteristics, including the presence of phasmids, a pair of sensory organs located in the lateral posterior region, and this was used as the basis for this division. This scheme was adhered to in many later classifications, though the Adenophorea were not in a uniform group. Initial studies of incomplete DNA sequences[40] suggested the existence of five clades:[41] The Secernentea seem to be a natural group of close relatives, while the "Adenophorea" appear to be a paraphyletic assemblage of roundworms that retain a good number of ancestral traits. The old Enoplia do not seem to be monophyletic, either, but do contain two distinct lineages. The old group "Chromadoria" seems to be another paraphyletic assemblage, with the Monhysterida representing a very ancient minor group of nematodes. Among the Secernentea, the Diplogasteria may need to be united with the Rhabditia, while the Tylenchia might be paraphyletic with the Rhabditia.[42] The understanding of roundworm systematics and phylogeny as of 2002 is summarised below: Phylum Nematoda "Chromadorea" assemblage Later work has suggested the presence of 12 clades.[43] The Secernentea—a group that includes virtually all major animal and plant 'nematode' parasites—apparently arose from within the Adenophorea. In 2019, a study identified one conserved signature indel (CSI) found exclusively in members of the phylum Nematoda through comparative genetic analyses.[44] The CSI consists of a single amino acid insertion within a conserved region of a Na(+)/H(+) exchange regulatory factor protein NRFL-1 and is a molecular marker that distinguishes the phylum from other species.[44] A major effort by a collaborative wiki called 959 Nematode Genomes is underway to improve the systematics of this phylum.[45] A complete checklist of the world's nematode species can be found in the World Species Index: Nematoda.[46] An analysis of the mitochondrial DNA suggests that the following groupings are valid[47] Anatomy?[edit] Internal anatomy of a male C. elegans nematode The head of a nematode is relatively distinct. Whereas the rest of the body is bilaterally symmetrical, the head is radially symmetrical, with sensory bristles and, in many cases, solid 'head-shields' radiating outwards around the mouth. The mouth has either three or six lips, which often bear a series of teeth on their inner edges. An adhesive 'caudal gland' is often found at the tip of the tail.[51] The epidermis is either a syncytium or a single layer of cells, and is covered by a thick collagenous cuticle. The cuticle is often of a complex structure and may have two or three distinct layers. Underneath the epidermis lies a layer of longitudinal muscle cells. The relatively rigid cuticle works with the muscles to create a hydroskeleton, as nematodes lack circumferential muscles. Projections run from the inner surface of muscle cells towards the nerve cords; this is a unique arrangement in the animal kingdom, in which nerve cells normally extend fibers into the muscles rather than vice versa.[51] Digestive system?[edit] The oral cavity is lined with cuticle, which is often strengthened with structures, such as ridges, especially in carnivorous species, which may bear a number of teeth. The mouth often includes a sharp stylet, which the animal can thrust into its prey. In some species, the stylet is hollow and can be used to suck liquids from plants or animals.[51] The oral cavity opens into a muscular, sucking pharynx, also lined with cuticle. Digestive glands are found in this region of the gut, producing enzymes that start to break down the food. In stylet-bearing species, these may even be injected into the prey.[51] No stomach is present, with the pharynx connecting directly to a muscleless intestine that forms the main length of the gut. This produces further enzymes, and also absorbs nutrients through its single-cell-thick lining. The last portion of the intestine is lined by cuticle, forming a rectum, which expels waste through the anus just below and in front of the tip of the tail. The movement of food through the digestive system is the result of the body movements of the worm. The intestine has valves or sphincters at either end to help control the movement of food through the body.[51] Excretory system?[edit] Nitrogenous waste is excreted in the form of ammonia through the body wall, and is not associated with any specific organs. However, the structures for excreting salt to maintain osmoregulation are typically more complex.[51] In many marine nematodes, one or two unicellular 'renette glands' excrete salt through a pore on the underside of the animal, close to the pharynx. In most other nematodes, these specialized cells have been replaced by an organ consisting of two parallel ducts connected by a single transverse duct. This transverse duct opens into a common canal that runs to the excretory pore.[51] Nervous system?[edit] See also: Muscle arms Four peripheral nerves run along the length of the body on the dorsal, ventral, and lateral surfaces. Each nerve lies within a cord of connective tissue lying beneath the cuticle and between the muscle cells. The ventral nerve is the largest, and has a double structure forward of the excretory pore. The dorsal nerve is responsible for motor control, while the lateral nerves are sensory, and the ventral combines both functions.[51] The nervous system is also the only place in the nematode body that contains cilia, which are all nonmotile and with a sensory function.[52][53] At the anterior end of the animal, the nerves branch from a dense, circular nerve (nerve ring) round surrounding the pharynx, and serving as the brain. Smaller nerves run forward from the ring to supply the sensory organs of the head.[51] The bodies of nematodes are covered in numerous sensory bristles and papillae that together provide a sense of touch. Behind the sensory bristles on the head lie two small pits, or 'amphids'. These are well supplied with nerve cells and are probably chemoreception organs. A few aquatic nematodes possess what appear to be pigmented eye-spots, but whether or not these are actually sensory in nature is unclear.[51] Reproduction?[edit] Extremity of a male nematode showing the spicule, used for copulation, bar = 100 µm[54] Reproduction is usually sexual, though hermaphrodites are capable of self-fertilization. Males are usually smaller than females or hermaphrodites (often much smaller) and often have a characteristically bent or fan-shaped tail. During copulation, one or more chitinized spicules move out of the cloaca and are inserted into the genital pore of the female. Amoeboid sperm crawl along the spicule into the female worm. Nematode sperm is thought to be the only eukaryotic cell without the globular protein G-actin. Eggs may be embryonated or unembryonated when passed by the female, meaning their fertilized eggs may not yet be developed. A few species are known to be ovoviviparous. The eggs are protected by an outer shell, secreted by the uterus. In free-living roundworms, the eggs hatch into larvae, which appear essentially identical to the adults, except for an underdeveloped reproductive system; in parasitic roundworms, the lifecycle is often much more complicated.[51] Nematodes as a whole possess a wide range of modes of reproduction.[55] Some nematodes, such as Heterorhabditis spp., undergo a process called endotokia matricida: intrauterine birth causing maternal death.[56] Some nematodes are hermaphroditic, and keep their self-fertilized eggs inside the uterus until they hatch. The juvenile nematodes then ingest the parent nematode. This process is significantly promoted in environments with a low food supply.[56] The nematode model species C. elegans, C. briggsae, and Pristionchus pacificus, among other species, exhibit androdioecy,[57] which is otherwise very rare among animals. The single genus Meloidogyne (root-knot nematodes) exhibits a range of reproductive modes, including sexual reproduction, facultative sexuality (in which most, but not all, generations reproduce asexually), and both meiotic and mitotic parthenogenesis. The genus Mesorhabditis exhibits an unusual form of parthenogenesis, in which sperm-producing males copulate with females, but the sperm do not fuse with the ovum. Contact with the sperm is essential for the ovum to begin dividing, but because no fusion of the cells occurs, the male contributes no genetic material to the offspring, which are essentially clones of the female.[51] Free-living species?[edit] Different free-living species feed on materials as varied as bacteria, algae, fungi, small animals, fecal matter, dead organisms, and living tissues. Free-living marine nematodes are important and abundant members of the meiobenthos. They play an important role in the decomposition process, aid in recycling of nutrients in marine environments, and are sensitive to changes in the environment caused by pollution. One roundworm of note, C. elegans, lives in the soil and has found much use as a model organism. C. elegans has had its entire genome sequenced, the developmental fate of every cell determined, and every neuron mapped. Parasitic species?[edit] Eggs (mostly nematodes) from stools of wild primates One form of nematode is entirely dependent upon fig wasps, which are the sole source of fig fertilization. They prey upon the wasps, riding them from the ripe fig of the wasp's birth to the fig flower of its death, where they kill the wasp, and their offspring await the birth of the next generation of wasps as the fig ripens. Colorized electron micrograph of soybean cyst nematode (Heterodera sp.) and egg Similarly, multiple varieties of nematodes have been found in the abdominal cavities of the primitively social sweat bee, Lasioglossum zephyrus. Inside the female body, the nematode hinders ovarian development and renders the bee less active, thus less effective in pollen collection.[59] Plant-parasitic nematodes include several groups causing severe crop losses. The most common genera are Aphelenchoides (foliar nematodes), Ditylenchus, Globodera (potato cyst nematodes), Heterodera (soybean cyst nematodes), Longidorus, Meloidogyne (root-knot nematodes), Nacobbus, Pratylenchus (lesion nematodes), Trichodorus, and Xiphinema (dagger nematodes). Several phytoparasitic nematode species cause histological damages to roots, including the formation of visible galls (e.g. by root-knot nematodes), which are useful characters for their diagnostic in the field. Some nematode species transmit plant viruses through their feeding activity on roots. One of them is Xiphinema index, vector of grapevine fanleaf virus, an important disease of grapes, another one is Xiphinema diversicaudatum, vector of arabis mosaic virus. Other nematodes attack bark and forest trees. The most important representative of this group is Bursaphelenchus xylophilus, the pine wood nematode, present in Asia and America and recently discovered in Europe. Agriculture and horticulture?[edit] Depending on its species, a nematode may be beneficial or detrimental to plant health. From agricultural and horticulture perspectives, the two categories of nematodes are the predatory ones, which kill garden pests such as cutworms and corn earworm moths, and the pest nematodes, such as the root-knot nematode, which attack plants, and those that act as vectors spreading plant viruses between crop plants.[60] Plant-parasitic nematodes are often known as eelworms and attack leaves and buds. Predatory nematodes can be bred by soaking a specific recipe of leaves and other detritus in water, in a dark, cool place, and can even be purchased as an organic form of pest control.[citation needed] Rotations of plants with nematode-resistant species or varieties is one means of managing parasitic nematode infestations. For example, marigolds, grown over one or more seasons (the effect is cumulative), can be used to control nematodes.[61] Another is treatment with natural antagonists such as the fungus Gliocladium roseum. Chitosan, a natural biocontrol, elicits plant defense responses to destroy parasitic cyst nematodes on roots of soybean, corn, sugar beet, potato, and tomato crops without harming beneficial nematodes in the soil.[62] Soil steaming is an efficient method to kill nematodes before planting a crop, but indiscriminately eliminates both harmful and beneficial soil fauna. The golden nematode Globodera rostochiensis is a particularly harmful variety of nematode pest that has resulted in quarantines and crop failures worldwide. CSIRO has found a 13- to 14-fold reduction of nematode population densities in plots having Indian mustard Brassica juncea green manure or seed meal in the soil.[63] Epidemiology?[edit] Disability-adjusted life year for intestinal nematode infections per 100,000 in 2002. Anthelmintic effect of papain on Heligmosomoides bakeri Soil ecosystems?[edit] Further information: Soil ecology About 90% of nematodes reside in the top 15 cm (6") of soil. Nematodes do not decompose organic matter, but, instead, are parasitic and free-living organisms that feed on living material. Nematodes can effectively regulate bacterial population and community composition—they may eat up to 5,000 bacteria per minute. Also, nematodes can play an important role in the nitrogen cycle by way of nitrogen mineralization.[48] One group of carnivorous fungi, the nematophagous fungi, are predators of soil nematodes.[64] They set enticements for the nematodes in the form of lassos or adhesive structures.[65][66][67] Society and culture?[edit] Nematode worms (C. elegans), part of an ongoing research project conducted on the 2003 Space Shuttle Columbia mission STS-107, survived the re-entry breakup. It is believed to be the first known life form to survive a virtually unprotected atmospheric descent to Earth's surface.[68][69] See also?[edit]
SECERNENTEA Due to the lack of knowledge regarding many nematodes, their systematics is contentious. An early and influential classification was proposed by Chitwood and Chitwood[37]—later revised by Chitwood[38]—who divided the phylum into two classes—Aphasmidia and Phasmidia. These were later renamed Adenophorea (gland bearers) and Secernentea (secretors), respectively.[39] The Secernentea share several characteristics, including the presence of phasmids, a pair of sensory organs located in the lateral posterior region, and this was used as the basis for this division. Secernentea Scientific name: Secernentea SECERNENTEA
THE SUN GOD
LETTERS TRANSPOSED INTO NUMBER REARRANGED IN NUMERICAL ORDER
ATUM 1234 4321 MUTA MUT 234 432 TUM ATUM 1234 4321 MUTA
RE ATUM RE
Ancient Egyptian Religion: Old Kingdom At the time of the Old Kingdom his cult and some of his characteristics was taken over by Re but he lived on in the combined forms of the names Re-Atum and ...
Egyptian deities The ancient Egyptians adopted the solar disc standing for the suffix –ri as the name of the sun-god and called it Ra, as shown below. ...
Atum (Egyptian god) -- Britannica Online Encyclopedia Atum's myth merged with that of the great sun god Re, giving rise to the deity Re-Atum. When distinguished from Re, Atum was the creator’s original form, ... www.britannica.com/EBchecked/topic/42347/Atum Atum's myth merged with that of the great sun god Re, giving rise to the deity Re-Atum. When distinguished from Re, Atum was the creator’s original form, living inside Nun, the primordial waters of chaos. At creation he emerged to engender himself and the gods. He was identified with the setting sun and was shown as an aged figure who had to be regenerated during the night, to appear as Khepri at dawn and as Re at the sun’s zenith. ATUM THE COMPLETE AND ALL CONTAINING ONE
ATUM THE COMPLETE AND ALL SUSTAINING ONE
THE HERMETICA THE LOST WISDOM OF THE PHARAOHS Timothy Freke & Peter Gandy To the Memory of Giordano Bruno 1548 - 1600 Mundus Nihil Pulcherrimum The World is a Beautiful Nothing Page 23 "Although we have used the familiar term 'God' in the explanatory notes which accompany each chapter, we have avoided this term in the text itself. Instead we have used 'Atum - one of the ancient Egyptian names for the Supreme One God."
Page 45 The Being of Atum "Atum is Primal Mind." Page 45 The Being of Atum Give me your whole awareness, and concentrate your thoughts, for Knowledge of Atum's Being requires deep insight, which comes only as a gift of grace. It is like a plunging torrent of water whose swiftness outstrips any man who strives to follow it, leaving behind not only the hearer, but even the teacher himself. To conceive of Atum is difficult. To define him is impossible. The imperfect and impermanent cannot easily apprehend the eternally perfected. Atum is whole and conconstant. In himself he is motionless, yet he is self-moving. He is immaculate, incorruptible and ever-lasting. He is the Supreme Absolute Reality. He is filled with ideas which are imperceptible to the senses, and with all-embracing Knowledge. Atum is Primal Mind. Page 46 He is too great to be called by the name 'Atum'. He is hidden, yet obvious everywhere. His Being is known through thought alone, yet we see his form before our eyes. He is bodiless, yet embodied in everything. There is nothing which he is not. He has no name, because all names are his name. He is the unity in all things, so we must know him by all names and call everything 'Atum'. He is the root and source of all. Everything has a source, except this source itself, which springs from nothing. Atum is complete like the number one, which remains itself whether multiplied or divided, and yet generates all numbers. Atum is the Whole which contains everything. He is One, not two. He is All, not many. The All is not many separate things, but the Oneness that subsumes the parts. The All and the One are identical. You think that things are many when you view them as separate, but when you see they all hang on the One, /Page 47/ and flow from the One, you will realise they are unitedlinked together, and connected by a chain of Being from the highest to the lowest, all subject to the will of Atum. The Cosmos is one as the sun is one, the moon is one and the Earth is one. Do you think there are many Gods? That's absurd - God is one. Atum alone is the Creator of all that is immortal, and all that is mutable. If that seems incredible, just consider yourself. You see, speak, hear, touch, taste, walk, think and breathe. It is not a different you who does these various things, but one being who does them all. To understand how Atum makes all things, consider a farmer sowing seeds;
here wheat - there barley, Just as the same man plants all these seeds, so Atum sows immortality in heaven and change on Earth. Throughout the Cosmos he disseminates Life and movementthe two great elements that comprise Atum and his creation, and so everything that is. Page 48 Atum is called 'Father' because he begets all things, and, from his example, the wise hold begetting children the most sacred pursuit of human life. Atum works with Nature, within the laws of Necessity, causing extinction and renewal, constantly creating creation to display his wisdom. Yet, the things that the eye can see are mere phantoms and illusions. Only those things invisible to the eye are real. Above all are the ideas of Beauty and Goodness. Just as the eye cannot see the Being of Atum, so it cannot see these great ideas. They are attributes of Atum alone, and are inseparable from him. They are so perfectly without blemish that Atum himself is in love with them. There is nothing which Atum lacks, so nothing that he desires. There is nothing that Atum can lose, so nothing can cause him grief. Atum is everything. Atum makes everything, and everything is a part of Atum. Atum, therefore, makes himself. This is Atum's glory - he is all-creative, and this creating is his very Being. It is impossible for him ever to stop creatingfor Atum can never cease to be. Page 49 Atum is everywhere. Mind cannot be enclosed, because everything exists within Mind. Nothing is so quick and powerful. Just look at your own experience. Imagine yourself in any foreign land, and quick as your intention you will be there! Think of the ocean - and there you are. You have not moved as things move, but you have travelled, nevertheless. Fly up into the heavens - you won't need wings! Nothing can obstruct you - not the burning heat of the sun, or the swirling planets. Pass on to the limits of creation. Do you want to break out beyond the boundaries of the Cosmos? For your mind, even that is possible. Can you sense what power you possess? If you can do all this, then what about your Creator? Try and understand that Atum is Mind. This is how he contains the Cosmos. All things are thoughts which the Creator thinks."
ATUM THE COMPLETE AND ALL CONTAINING ONE
ATUM THE COMPLETE AND ALL SUSTAINING ONE
|